Arduino Meets Lego: The Ultimate DIY Robotics Project

Cyrus Tabrizi, 8/29/13
Step 6: Laser-cutting

      If you have access to a laser cutter to begin with, you probably know what you’re doing already. Nevertheless, I will point out some things you should remember to do like aligning your material properly, aligning the height of the bed, and running through the cut without the laser (this is to see if everything will turn out alright before the actual laser is turned on).
      The time it will take for the cut to finish depends on the material you are cutting the enclosure from. Once its cut, remove the parts and poke them out of the original sheet. Be careful with the thinner parts because they are fragile and pose a high risk for breaking. Try out all the parts. See how they fit together. If you’ve stuck with my original files and have all the power settings and focusing right, everything should fit together nicely and firmly. If there is something obviously wrong with the parts, go back to the drawing board and see what needs to change. It’s a learning process. I myself went through two or three complete cuts before I was happy with how it turned out. Since redoing the cut is to be expected, if you have the means, I recommend doing the first few cuts in a less expensive material. Then, once you’re surer about how everything will fit together should you use the final material.

IMG_4061 IMG_4088

Step 7: Finishing details about the remote

      For you to be sure that the enclosure works (and for you to have a remote at all), there is still a lot that needs to be done. Secure all the components in their places and put the rest of the enclosure together. Does it fit and feel like you expected? Now’s the best time if you want to revise—it’s much harder to that once things are soldered.
For those of you making my design, everything should fit into place with some pressing with the exception of the knob switch, LCD display, and the joystick—these
      If you’re happy with where the enclosure is going, get some standard electrical wire, a piece of string (ideally one that does not stretch much), and a wire-cutter. While you can probably guess what the electrical wire and wire-cutter are for, the piece of non-elastic string is my recommendation for determining how long you should be cutting your wires. Just connect the string to the component you will be wiring, and run it through your enclosure just like you would with the actual electrical wire. With that string you can gauge (no pun intended) how long your electrical wire will need to be. Leave an inch or so more than the exact length so that you will still have enough to rearrange your input and output pins—you can always have extra wire, but what you can’t have is not enough wire (in the case that you do, though, and everything is already secure, just take a second wire and solder it to the original short wire as an extension; then wrap the connection up with some electrical tape and tuck it away).
      Once you have your wires, solder everything together, put the last pieces on and you’ll have a finished remote control of your or my own or design! Feels pretty great huh? Well it will feel better once you test it out and hook it up to an RC car. I have included some of my test programs and my final code—they should all work perfectly with my own design, but with a little tweaking, they can be adapted to enclosures of your own design too! If something’s wrong, check your program. Check it again. Once you’re sure it’s not a coding issue, it might be time to take out that voltimeter and test some of your circuitry—some faulty parts might be afoot. If everything works, though, you have my congratulations. Just hold onto that feeling while you’re building the RC car!